skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Editors contains: "Wang, Haitao"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aichholzer, Oswin; Wang, Haitao (Ed.)
    Free, publicly-accessible full text available June 20, 2026
  2. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We present new results on 2- and 3-hop spanners for geometric intersection graphs. These include improved upper and lower bounds for 2- and 3-hop spanners for many geometric intersection graphs in ℝ^d. For example, we show that the intersection graph of n balls in ℝ^d admits a 2-hop spanner of size O^*(n^{3/2 - 1/(2(2⌊d/2⌋ + 1))}) and the intersection graph of n fat axis-parallel boxes in ℝ^d admits a 2-hop spanner of size O(n log^{d+1}n). Furthermore, we show that the intersection graph of general semi-algebraic objects in ℝ^d admits a 3-hop spanner of size O^*(n^{3/2 - 1/(2(2D-1))}), where D is a parameter associated with the description complexity of the objects. For such families (or more specifically, for tetrahedra in ℝ³), we provide a lower bound of Ω(n^{4/3}). For 3-hop and axis-parallel boxes in ℝ^d, we provide the upper bound O(n log ^{d-1}n) and lower bound Ω(n ({log n}/{log log n})^{d-2}). 
    more » « less
  3. Aichholzer, Oswin; Wang, Haitao (Ed.)
    The Betti tables of a multigraded module encode the grades at which there is an algebraic change in the module. Multigraded modules show up in many areas of pure and applied mathematics, and in particular in topological data analysis, where they are known as persistence modules, and where their Betti tables describe the places at which the homology of filtered simplicial complexes changes. Although Betti tables of singly and bigraded modules are already being used in applications of topological data analysis, their computation in the bigraded case (which relies on an algorithm that is cubic in the size of the filtered simplicial complex) is a bottleneck when working with large datasets. We show that, in the special case of 0-dimensional homology (relevant for clustering and graph classification) Betti tables of bigraded modules can be computed in log-linear time. We also consider the problem of computing minimal presentations, and show that minimal presentations of 0-dimensional persistent homology can be computed in quadratic time, regardless of the grading poset. 
    more » « less
  4. Aichholzer, Oswin; Wang, Haitao (Ed.)
    A graph is said to contain K_k (a clique of size k) as a weak immersion if it has k vertices, pairwise connected by edge-disjoint paths. In 1989, Lescure and Meyniel made the following conjecture related to Hadwiger’s conjecture: Every graph of chromatic number k contains K_k as a weak immersion. We prove this conjecture for graphs with at most 1.4(k-1) vertices. As an application, we make some progress on Albertson’s conjecture on crossing numbers of graphs, according to which every graph G with chromatic number k satisfies cr(G) ≥ cr(K_k). In particular, we show that the conjecture is true for all graphs of chromatic number k, provided that they have at most 1.4(k-1) vertices and k is sufficiently large. 
    more » « less
  5. Aichholzer, Oswin; Wang, Haitao (Ed.)
    For fixed d ≥ 3, we construct subsets of the d-dimensional lattice cube [n]^d of size n^{3/(d + 1) - o(1)} with no d+2 points on a sphere or a hyperplane. This improves the previously best known bound of Ω(n^{1/(d-1)}) due to Thiele from 1995. 
    more » « less
  6. Aichholzer, Oswin; Wang, Haitao (Ed.)
    We show that a variant of the continuous Fréchet distance between polygonal curves can be computed using essentially the same algorithm used to solve the discrete version. The new variant is not necessarily monotone, but this shortcoming can be easily handled via refinement. Combined with a Dijkstra/Prim type algorithm, this leads to a realization of the Fréchet distance (i.e., a morphing) that is locally optimal (aka locally correct), that is both easy to compute, and in practice, takes near linear time on many inputs. The new morphing has the property that the leash is always as short as possible. These matchings/morphings are more natural, and are better than the ones computed by standard algorithms - in particular, they handle noise more graciously. This should make the Fréchet distance more useful for real world applications. We implemented the new algorithm, and various strategies to obtain fast practical performance. We performed extensive experiments with our new algorithm, and released publicly available (and easily installable and usable) Julia and Python packages. In particular, the Julia implementation, for computing the regular Fréchet distance, seems to be {significantly faster} than other currently available implementations. See Table 2.2. Our algorithms can be used to compute the almost-exact Fréchet distance between polygonal curves. Implementations and numerous examples are available here: https://frechet.xyz. 
    more » « less
  7. Aichholzer, Oswin; Wang, Haitao (Ed.)
    The 𝓁₂² min-sum k-clustering problem is to partition an input set into clusters C_1,…,C_k to minimize ∑_{i=1}^k ∑_{p,q ∈ C_i} ‖p-q‖₂². Although 𝓁₂² min-sum k-clustering is NP-hard, it is not known whether it is NP-hard to approximate 𝓁₂² min-sum k-clustering beyond a certain factor. In this paper, we give the first hardness-of-approximation result for the 𝓁₂² min-sum k-clustering problem. We show that it is NP-hard to approximate the objective to a factor better than 1.056 and moreover, assuming a balanced variant of the Johnson Coverage Hypothesis, it is NP-hard to approximate the objective to a factor better than 1.327. We then complement our hardness result by giving a fast PTAS for 𝓁₂² min-sum k-clustering. Specifically, our algorithm runs in time O(n^{1+o(1)}d⋅ 2^{(k/ε)^O(1)}), which is the first nearly linear time algorithm for this problem. We also consider a learning-augmented setting, where the algorithm has access to an oracle that outputs a label i ∈ [k] for input point, thereby implicitly partitioning the input dataset into k clusters that induce an approximately optimal solution, up to some amount of adversarial error α ∈ [0,1/2). We give a polynomial-time algorithm that outputs a (1+γα)/(1-α)²-approximation to 𝓁₂² min-sum k-clustering, for a fixed constant γ > 0. 
    more » « less
  8. Aichholzer, Oswin; Wang, Haitao (Ed.)
    Given a zigzag filtration, we want to find its barcode representatives, i.e., a compatible choice of bases for the homology groups that diagonalize the linear maps in the zigzag. To achieve this, we convert the input zigzag to a levelset zigzag of a real-valued function. This function generates a Mayer-Vietoris pyramid of spaces, which generates an infinite strip of homology groups. We call the origins of indecomposable (diamond) summands of this strip their apexes and give an algorithm to find representative cycles in these apexes from ordinary persistence computation. The resulting representatives map back to the levelset zigzag and thus yield barcode representatives for the input zigzag. Our algorithm for lifting a p-dimensional cycle from ordinary persistence to an apex representative takes O(p ⋅ m log m) time. From this we can recover zigzag representatives in time O(log m + C), where C is the size of the output. 
    more » « less
  9. Aichholzer, Oswin; Wang, Haitao (Ed.)
    Quantum topology provides various frameworks for defining and computing invariants of manifolds inspired by quantum theory. One such framework of substantial interest in both mathematics and physics is the Turaev-Viro-Barrett-Westbury state sum construction, which uses the data of a spherical fusion category to define topological invariants of triangulated 3-manifolds via tensor network contractions. In this work we analyze the computational complexity of state sum invariants of 3-manifolds derived from Tambara-Yamagami categories. While these categories are the simplest source of state sum invariants beyond finite abelian groups (whose invariants can be computed in polynomial time) their computational complexities are yet to be fully understood. We first establish that the invariants arising from even the smallest Tambara-Yamagami categories are #P-hard to compute, so that one expects the same to be true of the whole family. Our main result is then the existence of a fixed parameter tractable algorithm to compute these 3-manifold invariants, where the parameter is the first Betti number of the 3-manifold with ℤ/2ℤ coefficients. Contrary to other domains of computational topology, such as graphs on surfaces, very few hard problems in 3-manifold topology are known to admit FPT algorithms with a topological parameter. However, such algorithms are of particular interest as their complexity depends only polynomially on the combinatorial representation of the input, regardless of size or combinatorial width. Additionally, in the case of Betti numbers, the parameter itself is computable in polynomial time. Thus while one generally expects quantum invariants to be hard to compute classically, our results suggest that the hardness of computing state sum invariants from Tambara-Yamagami categories arises from classical 3-manifold topology rather than the quantum nature of the algebraic input. 
    more » « less